1.将三个一样大小的三角形在三个对应角的位置上,分别标上三个字母A,B,C。然后将第一个三角形的A角,第二个三角形的B角,第三个三角形的C角,拼在一起,这时它们的下边(或上边)就正好形成一条直线。即三个角形成了一个平角。就是说三个角的度数和是一百八十度。而这三个角是三角形的三个内角。
2.做三角形ABC
过点A作直线EF平行于BC
角EAB=角B
角FAC=角C
角EAB+角FAC+角BAC=180
角BAC+角B+角C=180
3.设三角形三个顶点为A、B、C,分别对应角A、角B、角C;过点A做直线l平行于直线BC,l与射线AB组成角为B,l与射线AC组成角为C,角B与角B、角C与角C分别构成内错角,根据平行线内错角相等定理,可得:三角形的内角和=角A+角B+角C=角A+角B+角C=180度。
4.延长三角形一条边,形成一个三角形的外交。很容易发现这个角和与它相临的三角形内角相加为一平角(180度),所以它们是邻补角。再过这个内角的顶点作一条直线平行于这个角的对边,将那个外交分成两个角。利用两直线平行,同位角相等,内错角相等,可以证明三角形另外两个角分别于这个外交分出来的两个角相等。则三角形三个内角之和就等于其中那个内角加上它的邻补角,即为180度。