1.分解质因数法
先把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。
2.公式法
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
比如求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。