1.观察法
用于简单的解析式。
y=1-√x≤1,值域(-∞, 1]
y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞)。
2.配方法
、多用于二次(型)函数。
y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,+∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3.换元法
多用于复合型函数。
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。
特别注意中间变量(新量)的变化范围。
y=-x+2√( x-1)+2
令t=√(x-1),则t≥0,x=t^2+1。
y=-t^2+2t+1=-(t-1)^2+2≤2,值域(-∞, 2]。