初二下册数学知识点

初二下册数学知识点

初二下册数学主要学习二次公式、勾股定理、平行四边形、一次函数、数据的分析五个章节,涉及最简二次根式、同类二次根式、二次根式的性质及运算、勾股定理和逆定理、直角三角形的性质及判定、命题、定理、证明等知识点。

第十六章分式

一、定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。

二、分式基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

三、分式计算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒置后,与被除式相乘。

分式乘方:分式乘方要把分子、分母分别乘方。

四、整数指数幂:较小数的科学记数法;

五、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。(这个解是增根,原方程无解)。

第十七章 反比例函数

一、形如y= (k为常数,k≠0)的函数称为反比例函数;

二、反比例函数的图像属于双曲线;

三、性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

第十八章 勾股定理

一、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么  

二、勾股定理逆定理:如果三角形三边长a,b,c满足 ,那么这个三角形是直角三角形。

三、经过证明被确认正确的命题叫做定理。

四、我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

第十九章 四边形

一、平行四边形:

1、定义:有两组对边分别平行的四边形叫做平行四边形。

2、性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3、判定:

(1)两组对边分别相等的四边形是平行四边形;

(2)两组对角分别相等的四边形是平行四边形;

(3)对角线互相平分的四边形是平行四边形;

(4)一组对边平行且相等的四边形是平行四边形。

(5)有两组对边分别平行的四边形叫做平行四边形。(定义)

4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。

二、矩形:

1、定义:有一个角是直角的平行四边形叫做矩形。

2、性质:矩形的四个角都是直角;矩形的对角线平分且相等。

3、判定:

(1)有一个角是直角的平行四边形叫做矩形。(定义)

(2)对角线相等的平行四边形是矩形。

(3)有三个角是直角的四边形是矩形。

4、直角三角形斜边上的中线等于斜边的一半。

三、菱形:

1、定义:一组邻边相等的平行四边形是菱形

2、性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

3、判定:

(1)一组邻边相等的平行四边形是菱形。(定义)

(2)对角线互相垂直的平行四边形是菱形。

(3)四条边相等的四边形是菱形。

4、S菱形=底×高; S菱形= ab(a、b为两条对角线)。  

四、正方形:

1、定义:有一组邻边相等的矩形是正方形。或有一个角是直角的菱形是正方形。

2、性质:四条边都相等,四个角都是直角;正方形既是矩形,又是菱形。

3、判定:(1)邻边相等的矩形是正方形。

(2)有一个角是直角的菱形是正方形。

五、梯形:

1、定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

2、等腰梯形定义:两腰相等的梯形叫做等腰梯形。

性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

判定:同一底上两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。

  3、梯形的中位线分别平行于上、下两底,且等于上、下两底和的一半。

六、重心:

1、线段的重心就是线段的中点。

2、平行四边形的重心是它的两条对角线的交点。

3、三角形的三条中线交于疑点,这一点就是三角形的重心。

七、数学活动(教材115页):

1、折纸多60°、30°、15°的角证明方法(重点30°角)

2、宽和长的比是 (约为0.618)的矩形叫做黄金矩形。

第二十章 数据的分析

一、加权平均数:计算公式(教材125页。)

二、中位数:将一组数据按照由小到大(大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

三、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。

四、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

五、方差:

1、计算公式:(表示的平均数)

2、性质:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

六、数据的收集与整理的步骤:

1、收集数据;2、整理数据;3、描述数据;4、分析数据;5、撰写调查报告。

推荐阅读